# Modeling and Measurements of Micro-instability Dispersion Relations

SEBASTIÁN ROJAS MATA AND EDGAR Y. CHOUEIRI

PRINCETON E×B WORKSHOP 2018



1-2 NOVEMBER 2018

PRINCETON, NJ



#### Outline

Laser-Induced Fluorescence (LIF) Diagnostic

Active Wave Injection (AWI) Methodology

#### Atomic Spectra



Severn et al. Rev. Sci. Instrum. 1997

 Excite transition with laser, observe de-excitation fluorescence



→ Laser-Induced Fluorescence

## LIF System





#### Data Interpretation



Sarfarty et al. PoP 1996



## Sample Dispersion Data





Sarfarty et al. PoP 1996

Jorns, Choueiri PRL 2013

Goal: Measure complex wavenumber k of a plasma wave at various frequencies  $\omega_1, \omega_2, ...$  simultaneously to get the dispersion relation *in one shot* 

Approach: Excite waves with an antenna at various frequencies by injecting a harmonically-rich signal into the plasma and conduct Fourier interferometric analysis of ion-saturation-current receiver probes



## AWI Diagnostic Schematic



Side view

## AWI Diagnostic Prototype



Goal: Measure complex wavenumber k of a plasma wave at various frequencies  $\omega_1, \omega_2, ...$  simultaneously to get the dispersion relation *in one shot* 

Approach: Excite waves with an antenna at various frequencies by injecting a harmonically-rich signal into the plasma and conduct interferometric analysis of ion-saturation-current receiver probe signals

Goal: Measure complex wavenumber k of a plasma wave at various frequencies  $\omega_1, \omega_2, ...$  simultaneously to get the dispersion relation *in one shot* 

Approach: Excite waves with an antenna at various frequencies by injecting a harmonically-rich signal into the plasma and conduct interferometric analysis of ion-saturation-current receiver probe signals

Goal: Measure complex wavenumber k of a plasma wave at various frequencies  $\omega_1, \omega_2, ...$  simultaneously to get the dispersion relation *in one shot* 

Approach: Excite waves with an antenna at various frequencies by injecting a harmonically-rich signal into the plasma and conduct interferometric analysis of ion-saturation-current receiver probe signals

#### Harmonic Comb Generator



#### Plasma Source



13.56 MHz RF argon discharge10 solenoid coils produce526 G background field



#### Validation Study

• Electrostatic Dispersion Relation

$$k_{\perp}^{2} + k_{\parallel}^{2} + \sum_{S} \frac{1}{\lambda_{D,S}^{2}} \left[ 1 + \sum_{n} e^{-b_{S}} I_{n}(b_{S}) Z(\zeta_{n,S}) \zeta_{0,S} \right] = 0$$

$$\zeta_{n,s} = \frac{\omega - n\omega_{c,s} - k_{\parallel} v_{d,s}}{\sqrt{2} k_{\parallel} v_{th,s}}, \ b_s = \frac{k_{\perp}^2 v_{th,s}^2}{\omega_{c,s}^2}$$

Focus: Electrostatic Ion Cyclotron Waves

## Initial Results – 150 W plasma



#### Lower-Hybrid Current-Driven Instability



Choueiri et al. IEPC-91-100



#### Thank You